Beyond T and DHT - Novel Steroid Derivatives Capable of Wild Type Androgen Receptor Activation
نویسنده
چکیده
While androgen deprivation therapy (ADT) remains the primary treatment for metastatic prostate cancer (PCa), castration does not eliminate androgens from the prostate tumor microenvironment, and residual intratumoral androgens are implicated in nearly every mechanism by which androgen receptor (AR)-mediated signaling promotes castration-resistant disease. The uptake and intratumoral (intracrine) conversion of circulating adrenal androgens such as dehydroepiandrosterone sulfate (DHEA-S) to steroids capable of activating the wild type AR is a recognized driver of castration resistant prostate cancer (CRPC). However, less well-characterized adrenal steroids, including 11-deoxcorticosterone (DOC) and 11beta-hydroxyandrostenedione (11OH-AED) may also play a previously unrecognized role in promoting AR activation. In particular, recent data demonstrate that the 5α-reduced metabolites of DOC and 11OH-AED are activators of the wild type AR. Given the well-recognized presence of SRD5A activity in CRPC tissue, these observations suggest that in the low androgen environment of CRPC, alternative sources of 5α-reduced ligands may supplement AR activation normally mediated by the canonical 5α-reduced agonist, 5α-DHT. Herein we review the emerging data that suggests a role for these alternative steroids of adrenal origin in activating the AR, and discuss the enzymatic pathways and novel downstream metabolites mediating these effects. We conclude by discussing the potential implications of these findings for CRPC progression, particularly in context of new agents such as abiraterone and enzalutamide which target the AR-axis for prostate cancer therapy.
منابع مشابه
Differential regulation of gonadotropin-releasing hormone secretion and gene expression by androgen: membrane versus nuclear receptor activation.
Steroid hormones induce rapid membrane receptor-mediated effects that appear to be separate from long-term genomic events. The membrane receptor-mediated effects of androgens on GT1-7 GnRH-secreting neurons were examined. We observed androgen binding activity with a cell-impermeable BSA-conjugated testosterone [testosterone 3-(O-carboxymethyl)oxime (T-3-BSA)] and were able to detect a 110-kDa p...
متن کاملP-84: Characterization of Androgen Receptor Structure and Nucleocytoplasmic Shuttling of the Rice Field Eel
Background: Androgen receptor (AR) plays a critical role in prostate cancer and male sexual differentiation.Mechanisms by which AR acts and regulations of AR nucleocytoplasmic shuttling are not understood well. Materials and Methods: Degenerate PCR and RACE Cloning of AR Gene; Phylogenetic Analysis and Molecular Modeling;Real-time Fluorescent Quantitative RT-PCR; Northern Blot Hybridization;In ...
متن کاملThe Mechanism of Androgen Deprivation and the Androgen Receptor
Prostate cancer is a major cause of cancer-related deaths in American men. The development and growth of prostate cancer depends on the androgen receptor (AR) and its high-affinity binding of dehydrotestosterone (DHT), which derives from testosterone (T). Most prostate tumors regress after therapy to prevent testosterone production by the testes, but the tumors eventually recur and cause death....
متن کاملAndrogen effects on hippocampal CA1 spine synapse numbers are retained in Tfm male rats with defective androgen receptors.
The effects of estradiol benzoate (EB), dihydrotestosterone (DHT), or the antiandrogen hydroxyflutamide on CA1 pyramidal cell dendritic spine synapses were investigated in adult male rats. To elucidate the contribution of the androgen receptor to the hormone-induced increase in hippocampal CA1 synapses, wild-type males were compared with males expressing the Tfm mutation, which results in synth...
متن کاملAndrogen receptor acetylation governs trans activation and MEKK1-induced apoptosis without affecting in vitro sumoylation and trans-repression function.
The androgen receptor (AR) is a nuclear hormone receptor superfamily member that conveys both trans repression and ligand-dependent trans-activation function. Activation of the AR by dihydrotestosterone (DHT) regulates diverse physiological functions including secondary sexual differentiation in the male and the induction of apoptosis by the JNK kinase, MEKK1. The AR is posttranslationally modi...
متن کامل